Измеритель напряжения и тока » Программирование устройств на PIC микроконтроллерах


Логин:
Пароль:
О сайте:

Pic.Rkniga.ru - Сайт как для начинающих, так и для опытных радиолюбителей, разрабатывающих свои устройства на популярных PIC микроконтроллерах.
Здесь можно обмениваться сообщениями на форуме, а также добавлять на сайт статьи и схемы своих устройств.

Меню сайта
Главная Форум по PIC микроконтроллерам Форум Статьи по PIC микроконтроллерам Статьи Справочная информаци по PIC микроконтроллерам Справочник Литература по PIC микроконтроллерам Литература Схемотехника Схемотехника устройств на PIC микроконтроллерах Микроконтроллеры Программаторы Все по программированию PIC микроконтроллеров Программы, Софт Программы Ссылки Написать нам
Опрос

Какие микроконтроллеры вы используете?


Atmel
MicroChip
STM
Motorola
Texas Instruments
Другие


Последние материалы
  • Часы с синхронизацией от китайского будильника
  • ШИМ регулятор на PIC16F628A.
  • Счетчики прямого и обратного счета на PIC16F628A.
  • Таймер отключения питания для мультиметра и не только.
  • Программирование на C микроконтроллеров PIC24
  • Измеритель напряжения и тока
  • Маршрутный компьютер для электровелосипеда
  • Простой двухканальный термометр на PIC16F690 и датчиках DS18B20
  • Электронная "Незабудка" для забывчивых
  • Встраиваемый вольтметр на PIC12F675
  • Популярные материалы
    Случайная книга
    Измеритель напряжения и тока
    Автор публикации: alex Просмотров: 2680 Добавлен: 16-06-2016, 11:13 Комментарии: 0

         Один из основных приборов в лаборатории радиолюбителя — регулируемый источник питания. Для повышения оперативности и удобства работы его полезно дополнить встроенным измерителем выходного напряжения и тока нагрузки. Описания таких измерителей довольно часто встречаются в Интернете и радиолюбительских журналах. Но бывает, что найденное описание не подходит для создания измерителя, подходящего для встраивания в конкретный источник питания. Ведь приходится учитывать много факторов, например, располагаемое место для его установки, наличие необходимых деталей. В предлагаемой статье представлен вариант измерителя, который может пригодиться и тем, кто разрабатывает лабораторный блок питания "с нуля", и тем, кто предполагает встроить его в уже готовый блок питания.
         Прибор измеряет постоянное напряжение от 0 до 51,1 В с дискретностью 0,1 В и постоянный ток от 0 до 5,11 А с дискретностью 0,01 А. Его прототипом послужил измеритель, описанный в [1], довольно простой по схеме и имеющий неплохие параметры. Основная реализованная в нём идея использовать недорогой микроконтроллер заслуживает внимания. Однако необходимость использовать ОУ, способный работать при однополярном питании при близком к нулю выходном напряжении, а также наличие дополнительного источника питания накладывают некоторые ограничения на его применение. К тому же индикаторы на плате прототипа расположены неудобно, лучше установить их в ряд по горизонтали и сократить размеры передней панели измерителя, приблизив их к габаритам использованных индикаторов.
         Принципиальная схема измерителя представлена на рис. 1. Поскольку найти применённые в [1] микросхемы 74HC595N (сдвиговые регистры с регистром хранения) не удалось, использованы микросхемы 74HC164N, в которых регистр хранения отсутствует. Также применены индикаторы, обладающие гораздо более высокой яркостью при малом токе, что позволило уменьшить потребляемый измерителем ток до 20 мА и отказаться от дополнительного стабилизатора напряжения +5 В.

    Измеритель напряжения и тока

         К сожалению, использование 74HC164N имеет недостаток — паразитное свечение элементов индикатора в моменты обновления их состояния. Но поскольку средняя яркость такого свечения незначительна и его дополнительно ослабляют светофильтры, которыми обычно закрывают индикаторы, это нельзя считать серьёзным недостатком. К тому же освобождается один из выводов микроконтроллера, который можно использовать, например, для подключения датчика температуры. При этом, правда, придётся внести изменения в программу микроконтроллера.
         Измеряемое напряжение подают на вход GP0 микроконтроллера DD1 через делитель из резисторов R7 и R9. Конденсатор С6 улучшает стабильность показаний вольтметра [1]. Сигнал сдатчика тока (резистора R1) поступает на вход GP1 микроконтроллера через инвертирующий усилитель на ОУ DA1. В отличие от [ 1 ], здесь используется двухполярное питание ОУ напряжением +/-8 В, поскольку далеко не все ОУ обладают свойством "rail to rail" и корректно работают при однополярном питании и почти нулевом напряжении на выходе. Двухполярное же питание позволяет легко решить эту проблему, допускает применение ОУ очень многих типов.
         Поскольку напряжение на выходе ОУ может находиться в интервале от -8 до +8 В, для защиты входа микроконтроллера от перегрузки применена ограничительная цепь R10VD9. Подстроечным резистором R8 регулируют коэффициент усиления, а подстроечным резистором R11 устанавливают нулевое напряжение на выходе ОУ. Диоды VD1 и VD2 защищают вход ОУ от перегрузки в случае обрыва датчика тока.

    Измеритель напряжения и тока

         Благодаря сравнительно малому сопротивлению датчика тока уход результата измерения напряжения при изменении тока нагрузки от нуля до максимального (5,11 А) не превышает 0,06 В. Если измеритель встраивают в источник напряжения отрицательной полярности, датчик тока можно включить перед выходным делителем напряжения его стабилизатора. При этом падение напряжения на датчике тока будет компенсировано цепью обратной связи стабилизатора. Поскольку ток делителя обычно невелик, на показания амперметра он влияния почти не окажет, к тому же это влияние можно скомпенсировать, подстрочным резистором R11.
         Питают измеритель выходным напряжением выпрямителя блока питания через преобразователь на транзисторах VT1 и VT2. Это несколько сложнее, чем в [1] , так как требует изготовления импульсного трансформатора, зато нет проблем с получением всех требуемых номиналов напряжения. Преобразователь напряжения представляет собой простейший двухтактный автогенератор, схема которого позаимствована из [2] . Частота преобразования — около 80 кГц.
         Благодаря гальванической развязке между входом и выходом преобразователя измеритель можно встроить в стабилизатор напряжения любой полярности. С указанными на схеме транзисторами он работоспособен при входном напряжении от 30 до 44 В, при этом выходные напряжения изменяются приблизительно от 8 до 12 В. Благодаря тому что сопротивления резисторов R5 и R6 выбраны довольно большими, преобразователь не боится замыканий выходов. В таких случаях генерация просто срывается.
         Напряжение 5 В для питания цифровой части измерителя получено с помощью интегрального стабилизатора DA2. Стабилизировать напряжения питания ОУ не требуется, поскольку сам он достаточно устойчив к его изменениям. Напряжение пульсаций с частотой преобразования подавляют RC-фильтры на входах микроконтроллера DD1. Если же слишком велики пульсации с частотой 100 Гц, рекомендуется воспользоваться способом их снижения, описанным в [3].
         Здесь стоит сказать несколько слов о присущей всем цифровым измерителям нестабильности младшего разряда результата измерения. Он всегда хаотически изменяется на единицу вокруг истинного значения. Эти флюктуации не являются следствием неисправности прибора, но их нельзя устранить полностью, можно лишь уменьшить, усредняя результаты большого числа измерений.

    Измеритель напряжения и тока

         Детали измерителя смонтированы на трёх печатных платах из фольгиро-ванного с одной стороны изоляционного материала. Рассчитаны они на установку микросхем в корпусах DIP. На одной плате (рис. 2) смонтированы индикаторы, на второй (рис. 3) — цифровые микросхемы и микроконтроллер. Преобразователь, стабилизатор напряжения питания микроконтроллера и усилитель сигнала датчика тока установлены на третьей плате (рис. 4).
         Размещение деталей на платах и межплатные соединения показаны на рис. 5. Красными цифрами на нём обозначены номера выводов импульсного трансформатора Т1 у мест их подключения к плате. Сам трансформатор закреплён на ней хомутами из изолированного монтажного провода. Блокировочные конденсаторы С13 и С14 припаяны непосредственно к выводам питания микросхем DD2 и DD3. Как показала практика, измеритель нормально работает и без этих конденсаторов.
         Платы микроконтроллера и индикаторов соединены кронштейнами из оцинкованной стали толщиной 0,5 мм. Плата преобразователя и усилителя закреплена двумя винтами М2. Расстояние между платами — около 11 мм. Такой вариант конструкции прибора (рис. 6) занимает меньше места на лицевой панели блока питания, в которую этот прибор должен быть встроен.
         Вместо ОУ КР140УД708 можно применить, например, КР140УД1408 и множество ОУ других типов. Следует отметить, что они могут требовать иных цепей коррекции, чем КР140УД708. Это следует учесть при проектировании печатной платы. Вместо сдвиговых регистров 74НС164 можно использовать 74НС4015, но придётся изменить топологию печатных проводников платы. Диоды КД522Б можно заменить на КД510А. Подстроечные резисторы R8 и R11 — СПЗ-19, R9 — импортный. Постоянные конденсаторы также импортные.
         Резистор R1 (датчик тока) можно изготовить из нихромового провода или применить готовый, как это сделано в [1 ]. Я сделал его из отрезка нихромо-вой ленты сечением 2,5x0,8 мм и длиной (с учётом залуженных концов) около 25 мм, извлечённой из теплового реле ТРИ. Трансформатор Т1 намотан на ферритовом кольце типоразмера 10x6x3 мм, извлечённом из неисправной КЛЛ. Все обмотки намотаны проводом ПЭВ-2 диаметром 0,18 мм. Обмотка 2-3 содержит 83 витка, обмотки 1 -2 и 4-5 — по 13 витков, а обмотка 6-7-8 — 80 витков с отводом от середины. Если выходное напряжение выпрямителя меньше 30 В, число витков обмотки 2-3 придётся уменьшить из расчёта приблизительно 4 витка на вольт.

    Измеритель напряжения и тока

         Между собой обмотки 1-2-3 и 4-5 изолированы одним слоем конденсаторной бумаги толщиной 0,1 мм, а от обмотки 6-7-8 — двумя слоями такой бумаги. После проверки работоспособности трансформатор пропитан лаком ХВ-784.
         Программа микроконтроллера написана в среде MPLAB IDE v8.92 на языке ассемблера MPASM. Предлагаются два её варианта. Файлы первого варианта находятся в папке "Общ. катод" и предназначены для прибора со светодиодными индикаторами с общими катодами разрядов, в том числе теми, что указаны на схеме рис. 1. Файлы второго варианта из папки "Общ. анод" следует использовать при установке в прибор светодиодных индикаторов с общими анодами разрядов. Однако на практике этот вариант программы не испытан. Программирование микроконтроллера было выполнено с помощью программы IC-prog и простого устройства, описанного в [4].
         Налаживание измерителя заключается в установке подстроечным резистором R11 нуля на выходе ОУ DA1 при отсутствии тока в измеряемой цепи. Затем в эту цепь подают ток, близкий к пределу измерения, но меньше его.
         Контролируя ток образцовым амперметром, подстроечным резистором R8 добиваются равенства показаний образцового и налаживаемого приборов.
         Подав и контролируя образцовым вольтметром измеряемое напряжение, устанавливают соответствующие показания на индикаторе прибора подстроечным резистором R9. Подробнее о налаживании написано в [1].

    Литература
    1. Балаев Б. Встраиваемый измеритель тока и напряжения на PIC12F675. — Радио, 2014, № 12, с. 18—20.
    2. Янгалиев Н. Блок питания на основе преобразователя напряжения для питания галогенных ламп. — Радио, 2005, № 5, с. 36, 37.
    3. Лоскутов И. Как уменьшить пульсации блока питания. — Радио, 1996, № 4, с. 54.
    4. Сизов А. Программирование современных PIC16, PIC12 на PonyProg. — Радио, 2004, №2, с. 31,32.

    Материал взят из: Журнала Радио 2016 №5
    Автор: Е. Герасимов, станица Выселки Краснодарского края

    В архиве: Исходный код программы на ассемблере и прошивка микроконтроллера PIC12F675 для индикатора с общим анодом и общим катодом.

    ismeritnapritoka.rar [6,38 Kb] (cкачиваний: 176)

    Комментарии
    Информация
    Посетители, находящиеся в группе Гости, не могут оставлять комментарии в данной новости.